Конспект урока изомерия упрощенная классификация органических соединений. Тема урока: « Классификация и номенклатура органических соединений »


Классификация органических соединений
Урок химии в 10 классе

Учитель химии

МОУСОШ №6 г. Нягани

ХМАО-Югры Тюменской области

Классификация соединений по строению углеродной цепи

Ациклические соединения - соединения с открытой (незамкнутой) углеродной цепью. Эти соединения называются также алифатическими.

Среди ациклических соединений различают предельные (насыщенные), содержащие в скелете только одинарные связи C-C и непредельные (ненасыщенные), включающие кратные связи C=C и C ≡C.

Ациклические соединения

Циклические соединения -

В зависимости от природы атомов, составляющих цикл, различают карбоциклические и гетероциклические соединения.

Карбоциклические соединения содержат в цикле только атомы углерода. Они делятся на две существенно различающихся по химическим свойствам группы: алифатические циклические - сокращенно алициклические - и ароматические соединения.

Гетероциклические соединения

(от греч. heteros - другой, иной) - кислород, азот, серу и др.

Классификация соединений по функциональным группам

Соединения, в состав которых входят только углерод и водород, называются углеводородами. Другие, более многочисленные, органические соединения можно рассматривать как производные углеводородов, которые образуются при введении в углеводороды функциональных групп, содержащих другие элементы. В зависимости от природы функциональных групп органические соединения делят на классы.

В состав молекул органических соединений могут входить две или более одинаковых или различных функциональных групп.
Например:

HO-CH2-CH2-OH (этиленгликоль);

NH2-CH2-COOH (аминокислота глицин).

Все классы органических соединений взаимосвязаны. Переход от одних классов соединений к другим осуществляется в основном за счет превращения функциональных групп без изменения углеродного скелета. Соединения каждого класса составляют гомологический ряд.

Список использованной литературы и Интернет-ресурса

Габриелян О. С., Маскаев Ф. Н., Пономарев С. Ю., Теренин В. И.Химия. 10 класс. Профильный уровень. М. Дрофа, 2009

Чертков И.Н. Методика формирований у учащихся основных понятий органической химии. – М.: Просвещение: 1991

www.uchportal.ru/load/60-1-0-9056


По теме: методические разработки, презентации и конспекты

«Строение и классификация органических соединений.Химические реакции в органической химии».

Контрольная работа по теме «Строение и классификация органических соединений. Химические реакции в органической химии»....




Ациклические соединения - соединения с открытой (незамкнутой) углеродной цепью. Эти соединения называются также алифатическими. Среди ациклических соединений различают предельные (насыщенные), содержащие в скелете только одинарные связи C-C и непредельные (ненасыщенные), включающие кратные связи C=C и C C. Ациклические соединения



Циклические соединения - В зависимости от природы атомов, составляющих цикл, различают карбоциклические и гетероциклические соединения. Карбоциклические соединения содержат в цикле только атомы углерода. Они делятся на две существенно различающихся по химическим свойствам группы: алифатические циклические - сокращенно алициклические - и ароматические соединения.






Классификация соединений по функциональным группам Соединения, в состав которых входят только углерод и водород, называются углеводородами. Другие, более многочисленные, органические соединения можно рассматривать как производные углеводородов, которые образуются при введении в углеводороды функциональных групп, содержащих другие элементы. В зависимости от природы функциональных групп органические соединения делят на классы.


Классификация органических веществ.

Химию можно разделить на 3 большие части: общую, неорганическую и органическую.

Общая химия рассматривает закономерности, относящиеся ко всем химическим превращениям.

Неорганическая химия изучает свойства и превращения неорганических веществ.

Органическая химия это большой и самостоятельный раздел химии, предметом изучения которого, являются органические вещества:

- их строение;

- свойства;

- методы получения;

- возможности практического использования.

Название органической химии предложил шведский ученый Берцелиус.

До начала 19 века все известные вещества делили по их происхождению на 2 группы:

1) вещества минеральные (неорганические) и

2) вещества органические .

Берцелиус и многие ученые тех времен считали, что органические вещества могут образовываться только в живых организмах при помощи некой «жизненной силы». Такие идеалистические взгляды назывались виталистическими (от лат. «vita» - жизнь). Они задерживали развитие органической химии как науки.

Большой удар взглядам виталистов нанес немецкий химик В. Велер . Он впервые получил органические вещества из неорганических:

В 1824 г. – щавелевую кислоту, а

В 1828 г. – мочевину.

В природе щавелевая кислота встречается в растениях, а мочевина образуется в организме человека и животных.

Подобных фактов становилось все больше.

В 1845 г. нем. ученый Кольбе синтезировал уксусную кислоту из древесного угля .

В 1854 г. французский ученый М. Бертло синтезировал жироподобное вещество.

Становилось ясно, что никакой «жизненной силы» не существует, что вещества, выделенные из организмов животных и растений, могут быть синтезированы искусственным путем, что они имеют ту же природу, что и все прочие вещества.

В наши дни органическими веществами считают углеродсодержащие вещества, которые образуются в природе (живых организмах) и могут быть получены синтетическим путем. Поэтому органическую химию называют химией соединений углерода .

Особенности органических веществ .

В отличие от неорганических, органические вещества имеют ряд особенностей, которые обусловлены особенностями строения атома углерода.

Особенности строения атома углерода.

1) В молекулах органических веществ атом углерода находится в возбужденном состоянии и проявляет валентность, равную IV.

2) При образовании молекул органических веществ электронные орбитали атома углерода могут подвергаться гибридизации (гибридизация это выравнивание электронных облаков по форме и энергии ).

3) Атомы углерода в молекулах органических веществ способны взаимодействовать друг с другом, образуя цепи и кольца.

Классификация органических соединений.

Существуют различные классификации органических веществ :

1) по происхождению,

2) по элементному составу,

3) по типу углеродного скелета,

4) по типу химических связей,

5) по качественному составу функциональных групп.

Классификация органических веществ по происхождению .

Классификация органических веществ по элементному составу.

Органические вещества

углеводороды

кислородсодержащие

Кроме углерода, водорода и кислорода содержат азот и другие атомы.

Состоят из углерода и водорода

Состоят из углерода, водорода и кислорода

Предельные УВ

Непредельные УВ

Аминокислоты

Ароматические УВ

Альдегиды

Карбоновые кислоты

Нитросоединения

Эфиры (простые и сложные)

Углеводы

Классификация органических веществ по типу углеродного скелета.

Углеродный скелет – это последовательность химически связанных между собой атомов углерода.

Классификация органических веществ по типу химических связей.

Классификация органических веществ по качественному составу функциональных групп.

Функциональная группа постоянная группа атомов, которая определяет характерные свойства вещества.

Функциональная группа

Название

Класс органических в-в

Суффиксы и префиксы

-F, - Cl, - Br, - J

Фтор, хлор, бром, йод (галоген)

галогенопроизвоные

фтрометан

хлорметан

бромметан

йодметан

гидроксил

Спирты, фенолы

- С = О

карбонил

Альдегиды, кетоны

- аль

метаналь

- СООН

карбоксил

Карбоновые кислоты

метановая кислота

- N О2

нитрогруппа

Нитросоединения

Нитро-

нитрометан

- N Н2

аминогруппа

- амин

метиламин

Урок 3-4

Тема: Основные положения теории строения органических соединений

.

Причины многообразия органических веществ (гомология, изомерия ).

К началу второй половины XIX века было известно достаточно много органических соединений, но единой теории, объясняющей их свойства, не существовало. Попытки создания такой теории предпринимались неоднократно. Успехом не увенчалась ни одна.

Созданием теории строения органических веществ мы обязаны .

В 1861 году на 36 съезде немецких естествоиспытателей и врачей в г. Шпейере Бутлеров делает доклад, в котором излагает основные положения новой теории – теории химического строения органических веществ.

Теория химического строения органических веществ возникла не на пустом месте.

Объективными предпосылками ее появления явились :

1) социально-экономические предпосылки .

Бурное развитие промышленности и торговли с началаXIX столетия предъявляли высокие требования ко многим отраслям науки, в том числе и органической химии.

Они поставили перед этой наукой новые задачи :

- получение красителей синтетическим путем,

- совершенствование методов переработки с/х продуктов и др.

2) Научные предпосылки .

Фактов, требовавших объяснения было много:

- Ученые не могли объяснить валентность углерода в таких, например, соединениях, как этан, пропан и др.

- Ученые химики не могли объяснить почему два элемента: углерод и водород могут образовывать такое большое количество различных соединений и почему орг. веществ существует так много.

- Было непонятно - почему могут существовать органические вещества с одинаковой молекулярной формулой (С6Н12О6 – глюкоза и фруктоза).

Научно обоснованный ответ на эти вопросы и дала теория химического строения органических веществ.

К моменту появления теории многое уже было известно :

- А. Кекуле предложил четырехвалентность атома углерода для органических соединений.

- А. Купер и А. Кекуле высказали предположение об углерод-углеродной связи и о возможности соединения атомов углерода в цепи.

В 1860 г . на Международном конгрессе химиков были четко определены понятия об атоме, молекуле, атомном весе, молекулярном весе .

Суть теории химического строения органических веществ можно выразить следующим образом :

1. Все атомы в молекулах органических веществ соединены между собой в определенном порядке химическими связями согласно их валентности.

2. Свойства веществ зависят не только от того, какие атомы и сколько их входит в состав молекулы, но и от порядка соединения атомов в молекуле .

Порядок соединения атомов в молекуле и характер их связей Бутлеров назвал химическим строением .

Химическое строение молекулы выражается структурной формулой , в которой символы элементов соответствующих атомов соединяются черточками (валентными штрихами) которые обозначают ковалентные связи.

Структурная формула передает :

Последовательность соединения атомов;

Кратность связей между ними (простые, двойные, тройные).

Изомерия - это существование веществ, имеющих одинаковую молекулярную формулу, но разные свойства.

Изомеры – это вещества, имеющие одинаковый состав молекул (одну и туже молекулярную формулу), но различное химическое строение и обладающие поэтому разными свойствами.

3. По свойствам данного вещества можно определить строение его молекулы, а по строению молекулы можно предвидеть свойства.

Свойства веществ зависят от типа кристаллической решетки.

4. Атомы и группы атомов в молекулах веществ взаимно влияют друг на друга.

Значение теории.

Созданная Бутлеровым теория сначала была встречена научным миром отрицательно, т. к. ее идеи противоречили господствующему в то время идеалистическому мировоззрению, но через несколько лет теория стала общепризнанной, этому способствовали следующие обстоятельства:

1. Теория навела порядок в том невообразимом хаосе, в котором была органическая химия до нее. Теория позволила объяснить новые факты, доказала, что с помощью химических методов (синтеза, разложения и др. реакций) можно установить порядок соединения атомов в молекулах.

2. Теория внесла новое в атомно-молекулярное учение

Порядок расположения атомов в молекулах,

Взаимное влияние атомов

Зависимость свойств от молекулы вещества.

3. Теория сумела не только объяснить уже известные факты, но и дала возможность предвидеть свойства органических веществ на основании строения синтезировать новые вещества.

4. Теория позволила объяснить многообразие химических веществ.

5. Она дала мощный толчок синтезу органических веществ.

Развитие теории шло, как и предвидел Бутлеров, главным образом по двум направлениям :

1. Изучение пространственного строения молекул (реального расположения атомов в трехмерном пространстве)

2. Развитие электронных представлений (выявление сущности химической связи).

Урок 7

Классификация и номенклатура органических соединений

Цели урока:

1. Ввести понятия «гомологический ряд», «радикал», познакомить с принципами классификации органических соединений, типами номенклатуры, изучить правила составления названий органических соединений (обучающая).

2. Продолжить формирование научного мировоззрения (воспитывающая).

3. Способствовать развитию логического мышления (умения сравнивать, обобщать, делать выводы) (развивающая).

Оборудование: видеопроектор, ПСХЭ Д.И. Менделеева.

Ход урока

  1. Подготовка к восприятию нового материала (10 мин)

Опрос учащихся по домашнему заданию.

  1. Изучение нового материала (15 мин).

В зависимости от строения углеродного скелета органические соединения бывают:

1. ациклические (алифатические) – содержат незамкнутые углеродные цепи. Примеры: алканы, алкены, алкины и т.д.

2. циклические – соединения с замкнутой углеродной цепью. Примеры: циклогексан, бензол.

В зависимости от природы атомов в цикле:

1. карбоциклические – в цикле находятся только атомы углерода. Примеры: циклогексан, бензол.

2. гетероциклические – в цикле находятся еще атомы других элементов. Примеры:

Фуран Тиофен Пиридин

Гомологический ряд – ряд соединений одного структурного типа, отличающихся друг от друга по составу на определенное число повторяющихся структурных единиц – «гомологическую разность –CH 2 –». Гомологи обладают сходными химическим свойствами и изменяющимися физическими свойствами.

Классификация органических веществ по строению углеродного скелета и кратности связи:

I. Ациклические:

1. Предельные (алканы, парафины).

2. Непредельные: алкены, алкадиены, алкины.

II. Циклические:

1. Циклоалканы (циклопарафины).

2. Ароматические (арены): одноадерные, многоядерные.

Классификация по функциональной группе : углеводороды, галогенопроизводные углеводородов, спирты, фенолы, простые и сложные эфиры, спирты, альдегиды, кетоны, карбоновые кислоты, сложные эфиры, амины, нитросоединения и т.д.

Углеводородный радикал – остаток молекулы углеводорода, из которой удалены один или несколько атомов водорода.

Молекула

Первый радикал

Второй радикал

СН 4

метан

СH 3 –

метил

–CH 2 –

метилен

С 2 H 6

этан

С 2 H 5 –

этил

СH 3 –СH 2 –

этилиден

С 3 H 8

пропан

С 3 H 7 –

пропил

С 2 H 5 –СH=

пропилиден

С 6 H 6

бензол

С 6 H 5 –

фенил

Типы номенклатур:

1. Тривиальная (историческая) номенклатура . Названия сложились исторически, чаще всего по источнику происхождения: яблочная, уксусная, кофейная, хинная, сиреневая молочная, лимонная кислота.

2. Рациональная номенклатура . Применяется для коротких углеводородов с разветвленной цепью. Все предельные УВ рассматриваются как производные метана.

Данный урок познакомит вас с темой «Классификация органических соединений». Будут систематизированы знания учащихся об органических веществах, определены критерии классификации органических соединений. Вы узнаете о составлении схемы классификации органических веществ, что такое скелет молекул, как классифицируют вещества по классам и функциональным группам.

Тема: Введение в органическую химию

Урок: Классификация органических соединений

1. Критерии классификации органических веществ

Классификация по составу

Органические соединения подразделяют по составу на:

ü углеводороды - вещества, состоящие только из углерода и водорода;

Однако при этом в одну группу кислородсодержащих соединений попадают вещества с очень разными свойствами, такие, например, как уксусная кислота, сахар и целлюлоза.

Классификация по строению

Рис. 1. Классификация по строению

Наиболее полезна для химиков классификация органических веществ по их строению . Рис. 1. Внутри этой классификации существуют признаки, позволяющие наиболее полно охарактеризовать вещества.

2. Классификация по типу скелета

Первый признак классификации органического соединения по строению - тип скелета молекулы .

Скелет - это последовательность связанных атомов углерода в молекуле, основа структуры органического соединения.

Рис. 2. Разновидности углеродного скелета

Кроме атомов углерода, в состав скелета могут входить и другие атомы, например, O, S, N, если они связаны, по меньшей мере, с двумя атомами углерода.

Например, в диметиловом эфире СН3-О-СН3 атом кислорода включен в скелет молекулы, а в этаноле CH3-CH2-OH - нет. Молекулы, в скелет которых, кроме атомов углерода, входят атомы других элементов, называются гетероатомными(«гетеро-» - лат. «разный»).

Скелет молекулы может быть неразветвленным - все атомы углерода соединены последовательно - и разветвленным. Цепь из атомов углерода может быть замкнутой. Такую замкнутую группу атомов называют циклом. Поэтому скелет молекулы бывает или ациклическим, (т. е. не циклическим) или циклическим. В скелете различают первичный, вторичный, третичный, четвертичный атомы углерода.

Первичным называют атом углерода, связанный только с одним другим атомом углерода, вторичным - с двумя, третичным - с тремя, а четвертичным - с четырьмя другими атомами углерода.

Рис. 3. Наличие кратных связей и бензольных колец

3. Классификация по наличию кратных связей и бензольных колец

Второй признак классификации - наличие (или отсутствие) в молекуле кратных связей и бензольных колец. Органические вещества, содержащие только простые (одинарные) связи, называют предельными или насыщенными . Вещества, которые содержат не только простые, но и кратные (двойные или тройные) связи между атомами углерода, называют непредельными или ненасыщенными . На один атом углерода в их молекулах приходится меньшее число атомов водорода, чем у предельных соединений. Если вещество содержит бензольное кольцо , то его принято называть ароматическим соединением. Вещества, в состав которых не входят ароматические группировки , называют алифатическими. Иногда можно встретить устаревшее название алифатических соединений - соединения жирного ряда.

Рис. 4. Классификация по наличию функциональных групп

4. Классификация по наличию функциональных групп

Третий признак классификации - наличие (или отсутствие) функциональных групп. Производные углеводородов образуются при замещении атома водорода на какой-либо другой атом (Cl, Br) или группировку атомов (OH - гидроксогруппа, NH2 - аминогруппа и т. п.). Такие атом или группировка атомов во многом определяют свойства вещества , и поэтому многие из них называют функциональными группами . По числу функциональных групп в молекуле вещества делят на монофункциональные, полифункциональные (несколько одинаковых групп) и гетерофункциональные (разные функциональные группы).

Вещества, обладающие одинаковыми функциональными группами и (или) одинаковым набором кратных связей, имеют сходные свойства, поэтому их относят к одному классу органических соединений. Например, вещества, содержащие ОН-группу , относятся к классу спиртов. СН3ОН - метиловый спирт, С2Н5ОН - этиловый спирт и т. д.

Вещества, содержащие кратные связи, тоже образуют классы близких по свойствам соединений. Соединения с двойной связью, называются алкенами, с тройной связью - алкинами. Предельные углеводороды, или алканы - это соединения, не содержащие ни кратных связей, ни функциональных групп. Они также составляют отдельный класс органических веществ. Ароматические углеводороды называют аренами.

5. Гомологические ряды

Ряды веществ с похожими свойствами, состав которых отличается на одну или несколько групп CH2-, называют гомологическими рядами. Члены гомологических рядов по отношению друг к другу - гомологи . По сути, гомологические ряды составляют классы органических соединений. Рис. 5.

Рис. 5. Примеры гомологических рядов

Гомологи обладают одинаковыми химическими свойствами.

6. Примеры классификации разных органических веществ

Данный урок познакомил вас с темой «Классификация органических соединений». Были систематизированы знания учащихся об органических веществах, определены критерии классификации органических соединений. Вы узнали о составлении схемы классификации органических веществ, что такое скелет молекул, как классифицируют вещества по классам и функциональным группам.

Список литературы

1. Рудзитис Г. Е. Химия. Основы общей химии. 10 класс: учебник для общеобразовательных учреждений: базовый уровень / Г. Е. Рудзитис, Ф. Г. Фельдман. - 14-е издание. - М.: Просвещение, 2012.

2. Химия. 10 класс. Профильный уровень: учеб. для общеобразоват. учреждений/ В. В. Еремин, Н. Е. Кузьменко, В. В. Лунин и др. - М.: Дрофа, 2008. - 463 с.

3. Химия. 11 класс. Профильный уровень: учеб. для общеобразоват. учреждений/ В. В. Еремин, Н. Е. Кузьменко, В. В. Лунин и др. - М.: Дрофа, 2010. - 462 с.

4. Хомченко Г. П., Хомченко И. Г. Сборник задач по химии для поступающих в вузы. - 4-е изд. - М.: РИА «Новая волна»: Издатель Умеренков, 2012. - 278 с.

1. Interneturok. ru .

2. Органическая химия.

Домашнее задание

1. №№ 2, 3 (с. 22) Рудзитис Г. Е., Фельдман Ф. Г. Химия: Органическая химия. 10 класс: учебник для общеобразовательных учреждений: базовый уровень/ Г. Е. Рудзитис, Ф. Г. Фельдман. - 14-е издание. - М.: Просвещение, 2012.

2. К какому гомологическому ряду относится анилин? Есть ли в этом соединении функциональные группы?

3. Приведите пример классификации веществ по наличию кратной связи.

Закрепите материал с помощью тренажёров

Тренажёр 1 Тренажёр 2 Тренажёр 3







2024 © speleo96.ru.